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REFINED MEMBRANE THEORY OF ELECTROELASTIC SHELLS* 

N.N. ROGACHEVA 

An analysis of the membrane electroelastic state and the determination of 
the first vibration eigenfrequencies are often of particular interest in 
the analysis of thin-walled elements. It is shown how the error of 
membrane theory can be reduced considerably by introducing certain 
additional terms into the membrane boundary conditions. 

1. To be specific, we will examine piezoceramic shells with thickness polarization. We 
will write the equations of the theory of the bending of piezoelectric shells to an accuracy 
of quantities of the order of (11' T ?j*-"), where t is the index of variability of the funda- 
mental electroelastic state, and '1 is a small parameter equal to the ratio of half the shell 
thickness h and its characteristic dimension R: 

The equations of equilibrium: 

1 aGi 1 aH.. 
Ni=TT-TiJ- aa, L + k, (Cl - Gj) - 4 (H,j + E-lji) 

(ki = (A,‘4,)-’ i3Ai/8cz,) 

(1.2) 

(the quantity p in (1.1) should be assumed equal to one; it is required later); 

the electroelasticity relations: 
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the geometric relations: 
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(1.3) 

(1.4) 

(1.5) 

(1.6) 

In (l.l)-(1.6) ui and w are the displacements of the middle-surface points along the 
coordinate lines ai and the normal to the middle surface, respectively, ai, w,xi: z are 
strain components, Ti and 6' are forces, Gi and Wij are the bending and twisting moments, Ni 
are transverse forces, and E, is the normal component of the electric field vector. The 
customary notation /I, 2/ is used for the physical constants. The following quantities are 
an exception: E,v,, F, whose formulas depend on the kind of electrical conditions on the 
shell faces. For shells with electrodes on the faces on which the value of the electric 
potential difference 2V is given, they are described by (1.71, and for shells without elec- 
trodes by (1.8) 

E = I/s,,", Y, = Y, F = d,,,/s,,=. E,c*) = -V/h (1.7) 

E =B, v. = ET, p = 0, Es(o) zzz 0 (1.8) 

We shall henceforth assume that the load acting on the shell, the shell georaetry, and the 
conditions of supporting its edges are such that the conditions for partitioning the electro- 
elastic state into the membrane state and into simple edge effects are satisfied. 

2. We will write the asymptotic representation of the desired raembrane electroelastic 
state parameters 111 

uJR = $I+,, w/R = w,, (Tit Sf/(2Ek) = Ti, 

fe, w) = (~i*r Q (Rw R4 = ~7-” (+r Q 
(Gi, Hi,)/2BhR z r]‘-2t (Gi*, HtJ*)v NijBBh = q’-“‘Nt* 

(2.1) 

The powers of the small parameter q are selected in such a manner that all the 
dimensionless desired quantities with the asterisks are of the same order. 

We will substitute the asymptotic form (2.1) into (l.l)-(1.61,and in addition, stretch 
the scale along the coordinate lines rxi as is usual for asymptotic methods, in such a Banner 
that differentiation with respect to the newly introduced variables s1 does not result in a 
substantial increase or decrease in the desired quantities 

CL; = q‘RSi (2.2) 

We will neglect small terms to an accuracy of terms of order of magnitude e,, in the 
transformed Eqs.(l.l)-(l.C)'.,.where 

Et = 0 (n' + nS-*') (2.3) 

whereupon we obtain a system of membrane theory Eqs.Cl.11, (1.3). (1.5) in which p should be 
set equal to zero. 

3. The asymptotic form of the simple edge effect of electroelastic shells is analogous 
to the corresponding asymptotic form in the theory of non-elastic shells. We will write it 
for the edge effect of shells with thickness polarization at the edge ai = alO: 

zL,/H = ?j'kUi*, z~ti/R = .tl'-f~j,, w&R = we (3% 
tG,t G,)/(2BhRf = q’ (Gl** G,*), H,j/(2BhR) = ~j”-*Hlj~ 

Ni/(2Eh) = q’Ni*, N,/(ZEh) = q’-IN,*, 
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TjI(2Eh) = rl’Tj*s Ti/(“E/L) = l{I'Ti,,, S/(ZEh) =- qy-'S, 

With respect to the variability of the desired quantities, it is assumed, exactly as in 
the theory of non-electric shells, that the variablity of the desired quantities in the 
direction orthogonal to the edge exceeds the variability along the edge 

oi = $:.I&, aj = q’REj (3.2) 

Constructing the equations of the simple edge effect just as is done in the theory of 
non-electric shells, we obtain the following simple edge effect equations in shells with 
thickness polarization 

(X3) 

where v0 and E are given by (1.7) and (1.8), depending on the electrical conditions on the 
faces. Formulas (3.3) are suitable for both statics and dynamics. If gi' > 0 in dynamic 
problems, then (3.3) describe the dynamic edge effect; if gi" < 0 then (3.3) describe a 
rapidly varying oscillating electroelastic state. 

Formulas (3.3) enable us to determine the desired quantities to the accuracy of quantities 
of order as, where 

e,, = 0 ($I*-') (3.4) 

4. The error in the membrane theory equations is determined by (2.3). To estimate the 
error of the membrane boundary conditions and to refine them, we follow /3/ and represent 
each of the desired quantities P in the form of the sum 

1' = p(r) + nap@' (4.1) 

The superscripts (f) and (e) denote that the given quantity belongs to a membrane electro- 
elastic state or to a simple edge effect, respectively. 

We shall consider the shell loaded by a surface electrical and mechanical load that is 
taken into account when solving the membrane problem. Consequently, an inhomogeneous system 
of equations holds for determining I-'(r). The quantity I-'(') is found from the homogeneous 
edge effect equations, and consequently, there is a scale factor 
number that is common for all the quantities that will be chosen 
conditions. 

Let us examine the boundary conditions on a rigidly clamped 
account of (2.1), (3.1), (4.1), they can be written in the form 

a;:, + nu+V?a~;) = 0, U;; + n"+l+$=O 

IL.:' + nQ$)= 0, y&J + sat"zr$;l I 0 

qe, for Pe) where a is a 
depending on the boundary 

edge ai = ai,. Taking 

The boundary-value problem obtained can be solved by setting a = 0. Retaining 
principal terms in (4.2), we obtain the traditional tangential boundary conditions for 
theory 

U','+' = u, a$ = 0 

and for the simple edge effect 

(4.2) 

the 
membrane 

(4.3) 

(4.4) 

An error O(n"'), greater than the error of the membrane Eqs.(2.3) was committed here in 
the boundary conditions (4.3). (4.4), when neglecting small terms. 

To refine the boundary conditions we rewrite (4.2) in the form 

u$:' + n%&) = ", I.&! = 0 (4.5) 

The solution of the resolving Eq.(3.3) at the edge ai = ai,, (ai < ai,) has the form 
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de) = [fl cos Aigi (ai - ai,) + fa sin Aigi (a, - aio)] ea~g@-aJ 
By satisfying conditions (4.4) we find on the edge ai = ai, 

By substituting the value of ui(*) obtained in the first formula into (4.5), we obtain 
the boundary conditions of membrane theory for a rigidly clamped edge,refined to quantities 

0 (F) 

The membrane boundary conditions on a hinge-supported 
manner 

edge can be refined in an analogous 

-w(f)= 0, uj”=o 

As a result of partitioning the electroelastic state for shells with preliminary tangen- 
tial polarization /4/, it has been shown that the membrane problem is a coupled electroelastic 
problem described by a system of sixth-order equations. We present without derivation the 
refined boundary conditions on the clamped edge ci = ai,, by considering the shell to be 
polarized initially along the as-line of the middle surface 

$$a,, = v (4.7) 

DY'- F n,&-& +-[RaglW]=O, (ar=a,,) (4.8) 

D,(f) + d,,n,,k,a,g,-‘UN) = 0 (a, = a,,) (4.9) 

Here 

Condition (4.7) should be satisfied on an edge with electrodes, while the electrical 
conditions (4.7) and (4.8) should be satisfied on the edges cl = cl0 and 
ively. 

a, = azO, respect- 

The first of conditions (4.6) in the refined membrane conditions (4.6)-(4.9) should be 
replaced by the condition for the force Ti 

Ti + hnjjkjaiRj-‘d’) = 0 

on the hinge-supported edge of a shell with tangential polarization. 
The refined membrane boundary conditions on an edge without clamping will be identical 

with the usual tangential boundary,conditions. 
Thus, if the membrane equations are supplemented by refined boundary conditions, the 

error will be reduced from a magnitude O(n"a) to a magnitude 0 (q'-*). 
A simple edge effect can be constructed to the same accuracy by using an iteration 

process that reduces to elementary integrable equations just as is done in the theory of non- 
electrical shells. To achieve the accuracy of the refined membrane theory here it is 
sufficient to combine ourselves to the first two approximations. 

Expanding each of the desired quantities in a series of the form 
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where P, should be understood to be any of the quantities u,*, ., S* introduced by (3.1), 
substituting the expansions into the system of shell theory equations, making the substitution 
(3.2) and equating coefficients of identical powers of k, we obtain equations for different 
approximations. 

We will write the fundamental equations of the two first approximations for shells with 
thickness polarization with faces with electrodes at the edge ai = ctiO: 

The superscript in parentheses denotes the number of the approximation, while quantities 
with negative superscripts should be considered to be zero. 

The quantities characterizing the metric and geometry of the shell middle surface l/Ai, 
l/Ri, ki are expanded in a Taylor series in powers of Ei in the *form 

Here Q is any of the quantities l/Ai, l/Ri, I;, and Q, are coefficients of the Taylor series, 
denoted, respectively, by l/ai,n, I/T~,~ and ki,,,. 

5. As an ilhStratiOn we analyse a part of a spherical shell with two rigidly clamped 
edues that coincide with the oarallel 8,=nl4 and 8, = 3nl4 in the aeoaranhical coordinate 
system. The shell is made from 

1 
W* 

w 3x/8 n/z 

1. 

2. 

3. 
4. 

the pieioceramic PZT-i with thickness polarization and with 
an electrical potential 2V given on its faces with electrodes. 
The results of calculating the deflection u* = ii,h/(l-d,,1-) are 
presented in the figure where the dashed line denotes the 
deflection calculated by a membrane theory of the type in /3/ 
and the theory of the first approximation of a simple edge 
effect, while the solid line shows the deflection calculated 
by the refined membrane theory taking two approximations of 
the simple edge effect into account. In addition, a com- 
putation of the deflection was preformed by the bending 
theory of shells by a numerical method and the results of 
the latter agree well with the solid line in the figure. 

The asymptotic analysis and calculations performed have 
shown that the refined membrane theory ensures the same com- 
putation accuracy for electroelastic states with small index 
of variability as does the bending theory of shells. Note 
that all the results obtained remain valid for non-electrical 
shells. 
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